The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution.
نویسندگان
چکیده
The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We showed recently that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in using UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (J Biol Chem 283:36205-36210, 2008). Here, we report the cloning, expression, and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 uses both UDP glucose and UDP xylose but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones, and estrogens. It has low activity toward bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis, and kidney but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more selective role in protecting the organs in which it is expressed against toxic insult rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.
منابع مشابه
Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids.
The large array of different glycolipids described in mammalian tissues is a reflection, in part, of diverse glycosyltransferase expression. Herein, we describe the cloning of a UDP-galactose: beta-d-galactosyl-1,4-glucosylceramide alpha-1, 3-galactosyltransferase (iGb(3) synthase) from a rat placental cDNA expression library. iGb(3) synthase acts on lactosylceramide, LacCer (Galbeta1,4Glcbeta1...
متن کاملCrystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.
Glycosylation is a ubiquitous reaction controlling the bioactivity and storage of plant natural products. Glycosylation of small molecules is catalyzed by a superfamily of glycosyltransferases (GTs) in most plant species studied to date. We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose. The structures reveal the key re...
متن کاملA two-step O- to C-glycosidic bond rearrangement using complementary glycosyltransferase activities.
An efficient 2'-O- to 3'-C-β-d-glucosidic bond rearrangement on the dihydrochalcone phloretin to convert phlorizin into nothofagin was achieved by combining complementary O-glycosyltransferase (OGT) and C-glycosyltransferase (CGT) activities in a one-pot transformation containing catalytic amounts of uridine 5'-diphosphate (UDP). Two separate enzymes or a single engineered dual-specific O/CGT w...
متن کاملCloning and Characterization of a Close Homologue of Human UDP-N-acetyl-a-D-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase-T3, Designated GalNAc-T6 EVIDENCE FOR GENETIC BUT NOT FUNCTIONAL REDUNDANCY*
The UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T3, exhibits unique functions. Specific acceptor substrates are used by GalNAc-T3 and not by other GalNAc-transferases. The expression pattern of GalNAc-T3 is restricted, and loss of expression is a characteristic feature of poorly differentiated pancreatic tumors. In the present study, a sixth human UDP-GalNAc:poly...
متن کاملProteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-GlcNAc complexes.
In complex with the cosubstrate UDP-N-acetylglucosamine (UDP-GlcNAc),O-linked-GlcNAc transferase (OGT) catalyzes Ser/ThrO-GlcNAcylation of many cellular proteins and proteolysis of the transcriptional coregulator HCF-1. Such a dual glycosyltransferase-protease activity, which occurs in the same active site, is unprecedented and integrates both reversible and irreversible forms of protein post-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 79 3 شماره
صفحات -
تاریخ انتشار 2011